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Abstract
Social scientists increasingly form composite datasets using data from different survey programs, 
which often use different single-question instruments to measure the same latent construct. This 
creates an obstacle when we want to run analyses using the combined data, since the scores 
measured with different instruments are not necessarily comparable. In this paper, we explore one 
consequence of such comparability problems. Specifically, we examine the case where instruments 
measuring the same construct have different item difficulties. This means if we applied the 
instruments to the same population, we would get different mean responses. If such mean 
differences are not mitigated before combining data, we introduce a mean bias into our composite 
data. Such mean bias has direct consequences for analyses based on the combined data. In data 
drawn from the same population, mean bias introduces error variance. In data drawn from 
different populations it would bias or even invert true population differences. However, in this 
paper I demonstrate that mean bias can also bias bivariate correlations if one or both variables in a 
composite dataset are subject to mean bias. If differences in item difficulty are not mitigated before 
combining data, we introduce a variant of Simpson’s paradox into our data: The bivariate 
correlation in each source survey might differ substantially from the correlation in the composite 
dataset. In a set of systematic simulations, I demonstrate this correlation bias effect and show how 
it changes depending on the mean biases in each variable and the strength of the underlying true 
correlation.
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Surveys in the social sciences often use single-question instruments to measure latent 
constructs, such as attitudes, values, interests, or emotions (Tourangeau et al., 2000). 
Furthermore, the same construct is often measured with different instruments in dif
ferent surveys (Tomescu-Dubrow & Slomczynski, 2016). Instruments might differ in 
their wording, response option labels, number of response options, or other design 
aspects. This instrument diversity is challenging when we want to combine data from 
different survey sources to be used in a joint analysis (Singh, 2020; Tomescu-Dubrow & 
Slomczynski, 2016). And such so called ex-post harmonization projects research projects 
are becoming increasingly common: From international comparative research (Dubrow 
& Tomescu-Dubrow, 2016; Durand et al., 2021; May et al., 2021), to integrative meta-anal
yses (Hussong et al., 2013), to research projects integrating national data on specific 
substantive topics (Schulz et al., 2022).

To mitigate comparability issues due to instrument diversity, such research projects 
must employ ex-post harmonization techniques (Granda et al., 2010). In other words, 
researchers have to carefully select, prepare, transform, and combine source data to 
create a homogeneous target data set. For example, when researchers aim to harmonize 
single-question instruments for the same latent construct, they have to ensure that the 
instruments do in fact measure the same construct and they have to assess the reliability 
(i.e., robustness against random error) of each instrument, to avoid introducing bias 
through attenuation into their harmonized dataset (Kolen & Brennan, 2014; Singh, 2022).

However, even if two instruments were perfect, error-free measures of the same 
construct, the researchers still face the challenge of aligning the units of measurement 
(i.e., scales) of their different instruments (Kolen & Brennan, 2014; Price, 2017). Instru
ments tend to differ in the numerical scale with which they represent a construct in 
the source data. This is not an error, per se. Latent constructs have no natural units 
and we can use arbitrary scales to represent latent construct intensity (i.e., respondents’ 
positions on a latent dimension) numerically (Price, 2017). This is easiest to see when 
we compare instruments with a different number of response options (i.e., scale points). 
If we measure the same population with a four-point scale or an eleven-point scale, 
we will most likely measure a higher average response and standard deviation with the 
eleven-point scale. This is because we scale (or map) the same construct intensities onto 
a different numerical scheme. However, the number of scale-points is only one factor of 
many. The measurement units also depend on the question wording, the response labels, 
the visual layout or any number of other design characteristics (Price, 2017; Tourangeau 
et al., 2000).

This paper aims to demonstrate how insufficient harmonization efforts can cause 
substantive and complex bias in our subsequent analyses using the combined data. 
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Specifically, we explore the last link in a chain of biases. If we do not properly align 
measurement units (i.e., scales) of different measurement instruments before combining 
the data, we often incur a mean bias in the combined data (Kolen & Brennan, 2014). With 
mean bias I mean that two instruments applied to the same population would result in 
systematically different average response scores. This is problematic, because it might 
introduce spurious population differences and needless error variance in analyses with 
the combined data. However, in this paper I set out to demonstrate that such mean 
biases have another, less intuitive consequence: They also bias correlations based on the 
combined data. Using a three-dimensional matrix of simulated bivariate correlations with 
varying degrees of mean bias, the paper sounds out the extent of this bias. Since the ma
trix of simulation varies mean bias in both variables separately, as well as the underlying 
unbiased correlation, we can also explore how the resulting mean bias depends on these 
three factors. In sum, the result of these simulations informs harmonization practitioners 
about the potential extent and shape of this often-overlooked form of bias in combined 
(survey) data.

Mean Bias
A substantive problem caused by incomparable and insufficiently harmonized measure
ment units is mean bias (Kolen & Brennan, 2014; Singh, 2022). Mean bias is best un
derstood when we consider the following thought experiment. Imagine applying two 
instruments X and Y to sufficiently large random samples A and B of the same popula
tion. If ex-post harmonization was successful, we would expect the mean responses to 
be approximately equal: X− ≈ Y−. This is because the average true score should be the 
approximately the same in two random samples of the same population: τ−A ≈ τ−B (Kolen 
& Brennan, 2014; Singh, 2020). However, without adequate ex-post harmonization, we 
might find that the average response to two congeneric instruments for the same 
construct differs by some constant d: X− = Y− + d (Price, 2017; Raykov & Marcoulides, 
2011). In other words, combining data across the two instruments introduces a mean 
bias d. This can easily occur, if two instruments for the same construct have different 
item difficulties (Moosbrugger & Kelava, 2012). Respondents may find one instrument 
wording easier to agree to then the alternative and thus for the same population of 
respondents would choose a higher mean response on one instrument than the other.

In practical terms this means that even after (insufficient) harmonization, an average 
respondent for our measured population would be represented by different numerical 
scores in our combined data (Kolen & Brennan, 2014). Of course, mean bias can also 
occur if instruments X and Y are applied to different populations. However, in such cases 
we cannot easily isolate the bias for single-question instruments, because the difference 
between X− and Y− is then a composite of the true construct difference τ−A − τ−B and the 
bias. Again, in practical terms, this means the mean differences between the populations 
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are either over- or underestimated by an amount proportional to the mean bias (Kolen & 
Brennan, 2014).

For a concrete example, consider two very similar measures of political interest. In 
Germany, the International Social Survey Programme (ISSP) is fielded together with the 
German General Social Survey (ALLBUS). In 2014, both asked the respondents about 
their level of political interest. The ALLBUS asked “How strongly are you interested in 
politics” with a five-point scale (GESIS-Leibniz-Institut Für Sozialwissenschaften, 2018), 
and the ISSP asked “How interested would you say you are in politics?” with a four-point 
scale (ISSP Research Group, 2016). Due to the different number of response options 
alone, we would expect a different mean response. And indeed, the mean response 
differed by Cohen’s d = 0.69 (Singh, 2022). To align these differences in scale points 
(and thus scale range), harmonization practitioners then often apply linear stretching 
(Cohen et al., 1999; de Jonge et al., 2017; Durand et al., 2021). This means that the scale 
ranges (i.e., maximum score minus minimum score) are aligned, by setting the minimum 
responses and the maximum responses as equal across instruments and then stretching 
all scores equidistantly in between. In our example, we would linearly stretch the scores 
1, 2, 3, 4, of the four-point ISSP instrument to 1, 2.33, 3.67, and 5. However, after this 
transformation we still find that the average responses differed by d = 0.38 between 
the two instruments (Singh, 2022). As it turns out, the two instruments differed in more 
than their scale range. Additionally, we find that both instruments have different item 
difficulties of P = 43 for the ALLBUS instrument and P = 33 for the ISSP instrument 
(Singh, 2022). In other words, the average respondent chose a score that was 43% along 
the range from 1 to 5 in the ALLBUS instrument but chose a score that was only 33% 
along the range from 1 to 4 in the ISSP instrument (Moosbrugger & Kelava, 2012; Singh, 
2022). However, linear stretching only aligns the scale ranges but not the position of the 
average response within the scale range. Thus, differences in item difficulty between two 
instruments remain untouched and can cause a substantive remaining mean bias when 
data from the two instruments are combined.

Such differences in difficulty between single-question instruments can be mitigated 
if we apply more suitable harmonization method than linear stretching. One example is 
observed score equating in a random groups design: OSE-RG (Kolen & Brennan, 2014; 
Singh, 2022). Alternatively, such difficulty differences can also be mitigated via multiple 
imputation. However, in this paper, we want to explore what happens if we fail to 
mitigate mean bias. Or in terms of our example, what would have happened if we had 
only used linear stretching. After all, harmonization practitioners might be unaware of 
the limitations of linear stretching. Or they may find the more suitable harmonization 
techniques unfeasible in their projects. After all, both approaches have data requirements 
that are not always easy to meet. OSE-RG, for example, requires random groups data; 
that is samples for both instruments drawn randomly from the same population. Harmo
nizing two instruments for the same construct with multiple imputation, meanwhile, 
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requires a calibration sample (Siddique et al., 2015): That is a sample in which each 
respondent answered both instruments, but in a way that does not lead to question order 
effects.

The first consequence of mean bias in composite data is straightforward: Under mean 
bias, scores derived from different instruments are biased by an additive constant. In 
data drawn from the same population, this introduces error variance. And even more 
worrisome, in data from different populations measured with different instruments, the 
mean bias is mingled with true population differences. Thus, we can no longer be certain 
that if two populations differ on average, that this is a true population difference. Instead, 
it could be a methodological artifact.

Biased Bivariate Correlations due to Mean Bias

In this paper, however, I will demonstrate with systematic simulations that bivariate 
correlations between two variables in a harmonized dataset can be biased as well, if 
one or both variables are subject to mean bias. This might seem surprising, because Pear
son product-moment correlations are unaffected by linear transformations of variable 
scores. Specifically, an additive constant d would not change the correlation coefficient 
r , because adding a constant to each score changes the arithmetic mean with the same 
constant (adapted from Gill, 2008):

1
n∑i = 1

n xi + d = x− + d

Thus, the Pearson product moment correlation formula (Gill, 2008) remains unchanged 
by an additive constant applied to all values of x (or y):

rxy =
∑i = 1

n   xi + d − x− + d yi − y−
sxsy = ∑i = 1

n xi − x− yi − y−
sxsy

However, this intuition is misleading, because in harmonization we combine data from 
different sources. In our combined dataset, a vector of responses for a construct would 
thus be composed of scores derived from different instruments. Consequently, mean bias 
does not add a constant to the whole variable, as above. Instead, mean bias adds different 
additive biases to different segments of the combined variable. The argument above 
obviously no longer holds if we add a constant d to some xi, but not all.

Imagine the following simplified combined dataset with data from surveys A and B. 
Both surveys measured the constructs P and Q. However, both surveys used different 
instruments for each construct, thus leading to a total of four instruments. If we combine 
these data, we arrive at the following combined dataset structure: a dataset with two 
variables, one for construct P and one for construct Q. Crucially, each construct variable 
(i.e., vector) is a composite of values from two surveys and thus two instruments. In 
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summary, there are thus three vectors for construct P: PA from survey A, PB from survey 
B, and PC as the composite vector in the joint dataset with data from two different 
instruments combined. Analogously, for construct Q there are then the vectors QA, QB, 
and QC.

This composite structure of variables in the combined dataset is crucial for under
standing the impact of mean bias. After all, mean bias introduced by instrument differen
ces does not affect the whole composite variable. Instead, it would be as if we added 
a constant to only half of the composite variable. Figure 1 shows the data structure 
schematically on the left.

Figure 1

Schematic Overview of a Composite Dataset and the Resulting Simpson’s Paradox

In this example, we assume that the scale of instrument PB assigns scores that are on 
average dP = − 2 lower than the scores that instrument PA would assign for respondents 
with the same true score in construct P. Instrument QB, meanwhile, assigns scores that 
are on average dQ = 2 higher than the scores that instrument QA would assign for 
respondents with the same true score in construct Q.

If we now plot this combined dataset but differentiate by source surveys (and thus 
source instruments) we observe a surprising pattern in Figure 1 on the right. Within 
the data from each survey, constructs P and Q are perfectly correlated with rA = rB = 1.0
(pink and green trend lines). However, if we correlate PC and QC across the combined 
data, the correlation drops to a mere rC = . 11 (blue trend line).

What has happened? The conditional correlations in two groups are identical, but 
the correlation across both groups is substantially different. Through the mean bias 
in P and in Q, we have introduced a version Simpson’s paradox into our combined 
data (Rücker & Schumacher, 2008). In general, Simpson’s paradox describes an empirical 
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pattern where we observe the same relationship between two variables in two (or more) 
groups separately, but a substantially different relationship in analyses across the groups. 
Of course, Simpson’s paradox is not an actual paradox. Instead it is “a form of bias, 
resulting from heterogeneity in the data [that has not been] accounted for” (Rücker & 
Schumacher, 2008). If we decompose the problem, we see that the overall correlation rC is 
a composite of the individual source survey (and thus source instrument) correlations, rA
and rB, on the one hand, and of the spurious correlation introduced by the mean biases 
(dP and dQ in red). To visualize this mean biased induced competing correlation as a 
trendline through the two bivariate group means in surveys A and B (the plus signs on 
the trend lines of surveys A and B). In other words, if we do not account for mean bias, 
ideally by removing it with a suitable harmonization procedure, we bias correlations by 
Δr = rC − ru.

This simple example showed that, in principle, mean bias between source instruments 
can result in biased correlations. However, under what circumstances does this correla
tion bias occur and with which intensity? In this paper, I set out to map the landscape 
of this bias with a series of systematic simulations. Specifically, the simulations will 
demonstrate that the correlation bias due to mean bias in composite data is determined 
by the interaction of three factors. First, by the mean bias in the composite variable PC. 
Graphically, in Figure 1 above, we would shift the data of survey B left or right. Second, 
by the mean bias in the composite variable QC. Graphically, we would shift the data of 
survey B up or down. Third, by the strength of the unbiased correlation ru between the 
constructs P and Q. By unbiased correlation, I mean the correlation we would expect in 
the absence of mean biases: ru = rC dP = dQ = 0. Graphically, lower or higher values of 
ru would mean that the datapoints of A and B would fluctuate more or less around the 
diagonal trendlines for each survey.

By systematically varying all plausible combinations of those three factors, we can 
map out plausible boundaries of the mean bias induced correlation bias Δr . With these 
simulations, I aim to provide practical insights into the following questions:

1. How large is the maximum potential bias for plausible mean biases −1 ≤ d ≤ 1?
2. How do different combinations of mean biases dP and dQ impact the correlation bias?
3. How different unbiased correlations ru impact the correlation bias?
4. Under which conditions are absolute empirical effect size rC  over- or 

underestimations of the unbiased absolute effect size ru ?
5. Can mean bias cause correlations to change direction?

The overarching goal of this paper is to clearly map out the extent and shape of a bias 
in survey data harmonization that practitioners might not have previously considered. 
Armed with this intuition, harmonization practitioners can better anticipate the risk 
of incurring a correlation bias in their analyses if substantive variables composed of 
different source variables are not adequately harmonized.
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Method

Software
All simulations, analyses, and plots were done in R (R Core Team, 2021) within the 
RStudio IDE (RStudio Team, 2022). The tidyverse package collection (Wickham et al., 
2019) was used for data transformation, automation, and data visualization. The pairs of 
correlated variables were simulated using the faux package (DeBruine, 2021).

Simulation
To answer the research questions, a three-dimensional matrix of simulations was compu
ted. The matrix thus contains simulated estimates of Δr for different bias configurations: 
i.e., combinations of plausible values of the mean biases dP, dQ in the composite variables 
and unbiased correlations ru. This bias configuration matrix allows us to systematically 
map out the resulting correlation biases for all combinations of mean biases and unbiased 
bivariate correlations. This is crucial because, as we will see in the results, the correla
tion bias changes drastically depending on these three factors. In the following, I first 
describe the basic assumptions, the process of generating a single correlation simulation 
for a single bias configuration, and then the structure of the whole bias configuration 
matrix.

Simulation Parameters
To clearly isolate the effects of mean bias, the simulation uses continuous, standard nor
mally distributed pairs of variables (i.e., x− = 0,  s = 1), and a predefined covariance and 
thus a predefined correlation ru. These variables were randomly generated using the faux 
package (DeBruine, 2021). Each simulated vector had a length of 10,000 elements. Since 
each vector was then duplicated (see next section), each simulation created a combined 
dataset C with two variables and a sample size N = 20,000. Mean bias is introduced by 
adding a constant to every value of a variable. This creates pure mean bias in the sense 
that the mean is the only distribution parameter that changes. Furthermore, since all 
source variables have the same standard deviation of s = 1, raw mean differences can be 
directly interpreted as Cohen’s d values.

Simulated Mean and Correlation Bias

For this paper, I simulate many bivariate correlations with different parameters. Each 
correlation is determined by three parameters. First, the mean bias dP in the composite 
variable PC, second, the mean bias dQ in the composite variable Q, and third the unbiased 
correlation coefficient between constructs P and Q, ru. Based on those three parameters, a 
simple harmonized dataset is simulated analogous to the one presented in Figure 1.

Biased Correlations in Combined Survey Data 8

Measurement Instruments for the Social Sciences
2024, Vol. 6, Article e11217
https://doi.org/10.5964/miss.11217

https://www.psychopen.eu/


The algorithm works like this. First, two vectors of simulated data are created. Both 
vectors contain standard normally distributed continuous values. The vectors exhibit 
a bivariate correlation that reflects the unbiased correlation ru that we aim for in this 
specific simulation. This setup represents data from survey A with variables PA and QA, 
measured by survey A’s instruments for the constructs P and Q. Second, we duplicate 
the simulated vectors for survey A and modify it with the mean bias parameters dP
and dQ. This creates a simulated survey B with variables PB and QB, that is identical to 
survey A except the different measurement unit: For example, a respondent who chose 
a response x in PA would have chosen a response x + dP in PB. This also ensures that 
the correlations in each survey are the same and equal to the unbiased correlation we 
aim for: rA = rB = ru. Third, we combine the simulated data for survey A and survey B 
together to generate a simulated harmonized dataset C. This means we append PB to PA
to form PC and we append QB and QA to form QC. Figure 2 below summarizes this process.

Figure 2

Schematic Overview of the Simulation Process for a Specific Combination of dP,  dQ, and ru

Based on these combined vectors PC and QC, we can calculate the biased correlation rC. 
The correlation bias Δr can then be calculated as the difference between the correlation 
biased by mean bias in P and Q and the unbiased correlation: Δr = rC − ru. The correla
tion bias Δr can be interpreted as follows: A positive Δr values mean that the biased 
correlation is numerically higher than the unbiased correlation and negative Δr values 
mean that the biased correlation is numerically lower than the unbiased correlation. 
Please note that this is not the same as the absolute correlation effect size being stronger 
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or weaker. For example, a positive Δr in the context of a strong negative unbiased 
correlation means that the correlation is weaker (e.g., ru = − 1;  rC = − 0.6; Δr = 0.4 .

Bias Configuration Matrix

The simulation described above covers one possible bias configuration, defined by the 
mean bias dP in Variable PC, the mean bias dQ in variable QC, and the unbiased correlation 
ru. For each such configuration, we get a correlation bias:

corrsim dP, dQ, ru = Δr = rC − ru
To systematically demonstrate how the correlation bias depends on the interaction of 
these three simulation parameters, all three parameters were varied from -1 to 1 with 
41 discrete steps (i.e., -1, -0.95, -0.90 … 0 … 0.90, 0.95, 1). This means the simulations 
in this paper cover the mean bias range −1 ≤ d ≤ 1 in variables PC and QC and the un
biased correlation range −1 ≤ ru ≤ 1. Then, all possible combinations of the three discrete 
parameter steps were formed. This resulted in a three-dimensional matrix of parameters 
with 413 = 68,921 parameter combinations. Then this parameter matrix was populated 
with the correlation bias Δr by running the simulation described above for each of these 
parameter combinations. The end result then was a matrix of correlation biases where 
each specific simulated correlation bias was determined by a specific combination of the 
three parameters. Thus, the simulation parameters formed a coordinate system, where a 
specific bias estimate can be retrieved via its bias coordinate dP, dQ, ru . Every data view 
reported in the results section is thus a specific subset of this matrix of correlation biases.

Results

Correlation Bias as a Function of the Combined Bivariate Mean 
Bias Strength
Our first question was: How large is the maximum potential bias for plausible mean 
biases −1 ≤ d ≤ 1? To answer this, we can calculate a measure of bivariate mean bias. 
Specifically, I calculated the Euclidian distance between two points defined by the means 
of the two variables in survey A and B. In Figure 2 above, this would be the distance 
between the green and pink plus-signs signifying the bivariate means in surveys A and 
B. Since the bivariate mean biases are two-dimensional, we can apply the Pythagorean 
theorem (Gill, 2008) to calculate the Euclidean distance as follows:

distance P−A
Q−A

, P−B
Q−B

= PB − PA 2 + QB − QA
2 = dP 2 + dQ

2
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If both composite variables are subject to a mean bias of dP = dQ = 1, then the distance 
would be 2 = 1.41, for example. Meanwhile, if one mean bias is zero, then the distance 
is equal to the other mean bias. And, of course, all other combinations of mean biases 
work as well. For example, if dP = 0.5 and dQ = 1 then the distance is 1.12. Figure 3 
below now shows all simulations plotted by their bivariate mean distance (x-axis) and 
their correlation bias Δr (y-axis). For easier interpretation, I have added two x-axis scales. 
The bottom scale shows the raw distance measure. The top x-axis, meanwhile, gives an 
example for the special case where both mean biases have the same absolute value. So a 
distance of 0.71 can, for example, be the result of the mean biases dP = dQ = 0.5.

Figure 3

Correlation Bias as a Function of Bivariate Mean Bias

The graph illustrates that the range of possible correlation biases increases as mean bia
ses increase. Specifically, the range of possible correlation biases increases quadratically. 
To show this, I have selected only the highest correlation biases for each distance and 
fitted a linear model which regressed the correlation bias on distance and quadratic 
distance. The black trendline shows the result. The numbers represent the maximum 
positive correlation bias at selected distances. If both variables have a mean bias of 
d = 0.5, then we would expect a bias range of − . 12 ≤ Δr ≤ . 12, or in other words a span 
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of .22. If both mean biases are d = 1, then this range increases to − . 4 ≤ Δr ≤ . 4, or a 
span of .8.

At the same time, the graph intuitively shows that the correlation bias depends on 
more than just the distance. In fact, even for the highest distance, there are still cases 
without any mean bias. This is because correlation bias depends on the direction of the 
mean bias in relation to the direction of the unbiased correlation ru as well as on the 
strength of the unbiased correlation ru . In the following sections, we will unravel these 
interactions step by step.

Correlation Bias as a Function of the Two Mean Biases Separately
To get a feeling for the interaction between the mean biases dP and dQ in both variables 
as well as the unbiased correlation ru, let us consider a series of mean bias grids in Figure 
4. Each grid varies mean biases systematically along the x and y axes. The colors mean
while indicate the correlation bias for each mean bias combination. The five different 
panels, meanwhile, show the correlation bias pattern for a different underlying unbiased 
correlation ru. From left to right, ru = − 1;   − . 5; 0; . 5; 1. We can thus interpret each 
panel as a two-dimensional cross-section of the three-dimensional simulation matrix for 
a given value of ru.

Figure 4

Correlation Bias as a Function of dP and dQ for Selected Values of ru

Let us first consider the panel in the middle. Here, the two constructs are uncorrelated 
with ru = 0. However, mean bias introduces spurious correlations. Since correlation bias 
is calculated as Δr = rC − ru, we see that if the mean biases are both positive or both 
negative, then we create a spurious positive correlation. In the extreme cases (the up
per-right and lower-left corners), we see that dP = dQ = 1 and dP = dQ = − 1 result in a 
spurious correlation of rC = . 2. In the opposite case, where dP = − 1 and dQ = 1 or vice 
versa, we see a negative spurious correlation of rC = − . 2. In other words, the positive 
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and negative mean bias diagonals are especially prone to creating correlation biases. In 
contrast, if either dP = 0 or dQ = 0, then no amount of mean bias creates a correlation 
bias. However, as we will see, this only remains true if ru = 0.

Next, we consider edge cases where the constructs are perfectly correlated. First, the 
rightmost panel, where the unbiased correlation is perfectly positive with ru = 1. Here 
we observe the strongest bias if the mean biases align diametrical to the correlation 
direction. In other words, we observe the strongest bias if dP = 1 and dQ = − 1, or when 
dP = − 1 and dQ = 1. At the same time, we observe a positive diagonal corridor that is 
completely free of correlation bias. If the bivariate mean bias moves along the positive 
diagonal, it merely aligns with the perfectly positive correlation. Second, leftmost panel, 
we see the same pattern, only mirrored. Bivariate mean bias along the positive diagonal 
creates the strongest correlation bias, bivariate mean bias along the negative diagonal 
results in no bias at all. We also find the same pattern as in the previous section. In 
the case of perfect correlations, we can realize positive or negative correlation biases of 
Δr = . 4. In both cases, the bias means that the perfect correlation is reduced in strength.

Now consider the second and fourth bias grid, with more realistic unbiased correla
tions of ru = . 5. Here, the problem of mean bias creating a bivariate correlation bias 
reveals its full extent. The only mean bias configuration with a correlation bias of zero 
is the middle devoid of mean bias (dP = dQ = 0). Mean biases that move in the opposite 
direction as the unbiased correlation still results in stronger bias than mean biases that 
move in the same direction as the unbiased correlation. In these cases, the unbiased 
correlation is severely underestimated ( Δr|=.3). However, mean biases that move in 
the same direction as the unbiased correlation also led to bias; this time a bias that 
overestimates the correlation by Δr = 0.1 .

Lastly, we see that the correlation bias intensity seems to vary for different levels of 
unbiased correlations. However, this is not quite true. In fact, the overall correlation bias 
range remains a steady max Δr − min Δr ≈ . 4 along the whole range of unbiased cor
relations −1 ≤ ru ≤ 1. It is just that the direction of the correlation bias shifts. Negative 
perfect unbiased correlations ru = − 1 only allow for positive bias values, positive perfect 
unbiased correlations ru = 1 only allow for negative bias values, while an unbiased 
correlation of ru = 0 allows for symmetrical biases in both directions. All other unbiased 
correlation values in between follow a linear pattern defined by these three selected 
cases. In the Supplementary Materials, I have plotted this dynamic in greater detail in 
Supplementary Figure A (see Singh, 2024b).

Is the Correlation Under- or Overestimated?
Now that we have gained a better understanding of the correlation bias dynamic, we 
can address two issues of practical relevance. First, practitioners might wonder which 
mean bias configurations inflate or reduce absolute correlations. In other words, whether 
absolute empirical effect sizes overestimate ( rC < ru ) or underestimate ( rC < ru ) the 
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absolute unbiased effect size. In Figure 5 below we see the familiar mean bias grids, but 
this time colors represent areas of reduced effect sizes in blue, inflated effect sizes in 
yellow, and areas with negligible bias (Δr < . 01) in green. The unbiased ru values range 
from zero to one, because negative values are just mirrored along the x-axis. We see 
that when ru = 0, then every corner inflates absolute correlations. However, as soon as ru
has a direction, then we have inflation in sectors where the mean bias direction aligns 
with the correlation direction, and reduction in sectors where the mean bias direction is 
opposite to the correlation direction. There are two further patterns worth noting. First, 
as ru increases in strength, the inflated sector contracts, the reduction sector expands. 
Second, as ru increases, bias that reduces the effect size gains in intensity and bias that 
inflates the effect size loses intensity.

Figure 5

Reduced or Inflated Absolute Effect Sizes

Can Mean Bias Change the Correlation Direction?
A last aspect of practical importance is if mean bias can invert the direction of correla
tions. Some researchers are more interested in the direction of effects then the absolute 
effect size. In such cases, it would be fatal if mean bias changed the direction of an effect. 
And indeed, there are simulations where the direction of ru is inverted. The minimum 
absolute distance was 0.57. In other words, in the worst case, an inverted correlation 
can already occur if both variables are biased with d = 0.4. However, such a change in 
direction can only occur for unbiased r values ru < . 25 as long as the mean biases 
remain between −1 ≤ d ≤ 1. Supplementary Figure B shows the mean bias areas with 
inverted correlations in detail (see Singh, 2024b).
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Discussion
When we combine data from different source surveys on the same latent constructs, we 
might incur a mean bias in our combined data. This usually happens if two instruments 
have different item difficulties, meaning they assign different positions along their scale 
range to average respondents for a specific population. In practical terms, if the two 
instruments were applied to the same population, we would get a higher mean value 
with one instrument than with the other. Such mean biases in combined data should 
ideally be removed by adequate harmonization techniques, such as equating or multiple 
imputation. However, if the combined data has not been fully harmonized, such as data 
that has only been linearly stretched, then mean biases might remain. Such mean biases 
are problematic in themselves, of course. If the instruments were applied in different 
populations, mean bias means that we might over- or underestimate the true population 
differences. However, the simulations in this paper demonstrate that mean bias can bias 
can also lead to biased bivariate correlations.

The simulations show that mean bias can lead to substantive correlation biases. For 
mean biases with −1 ≤ d ≤ 1, we observed correlation biases between − . 4 ≤ Δr ≤ . 4. 
For a specific unbiased correlation ru, we observed a range of correlation biases of 
max Δr − min Δr ≈ . 4 . And even if mean biases are weaker, this still implies a 
worrisome range of biases.

Furthermore, the simulations demonstrate how complex the interaction between the 
mean biases in each variable and the unbiased correlation is. In some configurations, 
even very large mean biases lead to little if any correlation biases. However, these 
cases mainly occur either in cases where the unbiased correlation is zero or where it 
approaches a perfect negative or positive correlation. In more realistic correlation ranges, 
all substantive mean bias configuration lead to correlation biases. Even for cases, where 
only one of the two composite variables is subject to mean bias.

The simulations also revealed two additional patterns of practical interest. First, mean 
biases can both inflate or reduce the absolute effect size. If we obtain an empirical 
correlation from a harmonized dataset and suspect that mean bias might be present, 
this means that the unbiased correlation might be higher or lower than the empirical 
correlation. Second, if the unbiased correlation ru is low, then its effect direction may 
be inverted by some mean bias configurations. Specifically, empirical correlations of 
rC < . 2 might misrepresent the unbiased correlation direction if we suspect mean biases 
up to a range of −1 ≤ d ≤ 1.

Conclusion
The paper has two main practical implications: (1) Wherever possible, mean bias should 
be mitigated by applying appropriate ex-post harmonization procedures, such as ob
served score equating (Singh, 2022) or multiple imputation using a calibration sample 
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(Siddique et al., 2015). (2) Where mean biases cannot be mitigated, correlations based on 
multi-source data should be interpreted with caution: The direction of small correlations 
may have been inverted and comparisons of the relative correlation strength across 
different instruments might be misleading.
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